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On The Stabilization Of Motion Of Mechanical Systems, Constrained Geometrically Servo Constraints. 
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       Let the mechanical system, the position of which is determined by the generalized coordinates q1, …,qn, , imposed 

geometrically servo constraints [1] of the form 

Ф (t, q1,…,qn)=0,  (=1,…,a)  (1) 

 It is assumed that among the possible displacements qi,  have such defined independent equations: 

  0,...,, 1
1

1



in

n

i
i qqqta    ,   (1=1,…,a)      (2)  

at which the reactions of second-class work was carried out [1]. Possible moves, satisfying  to condition (2) is called 

(A) -moves [2]. 

        Bearing in mind the parametrically release of systems from servo constraints [3,4], we introduce additional 

independent variables p, corresponding to the transformation system with servo constraints  (1) to the form 

Ф*(t, q1,…,qn,1,…,a)=0  , (=1,…,a)  (3) 

where   1,…,a – parameters, characterizing the release of system from servo constraints (1). Zero values of p and 

their derivatives  p corresponds  relations (1) and their differentiated forms. For these values can be taken, for 

example, the left sides of the equations (1), calculated on the actual motion of the system [3].  

      Denoting Np coercion reactions, related to the parameters p, we assume that the recent forced to change according 

to the differential equations [4-7] 

pp N ,   (p=1, …,a)   (4) 

Defining works of constraints on motions  p by expression: 
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for parametrically releasing  systems we have liberated: 
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where   
 2
iR  - the reaction of constraints of second-class (servo constraints). 

    Let the mode of action of the reactions of second-class, it follows that (A) -move work reactions of second-class is 

equal to zero for non-exempt and exempt parametrically systems. Then for arbitrary coercion reactions work (5) 

vanishes under conditions 

p=0,  (p=1,…a). 

Assuming, that equation (1) is solvable for  a of n generalized coordinates q1,…,qn, taking into account the equations 

(3) instead of, for example, q1,…,qa  , introduce parameters 1,…,a. Then, equation (2) will have the form 
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where    = ,  (=1,…,a);  a+s = qa+s (s=1,…,n-a). 

      As is well known [4-7], for such systems the equations of the principle of  D'Alembert-Lagrange, can be written as 
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where     T - the kinetic energy of the system; Qi - the generalized force, corresponding coordinate i. 

Then it follows from (7) by (A) -moves the equations of motion: 
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  , (i = 1, ..., n  )  ( 8) 

where   
1

  - the factors of constraints second-class.  

Equations (8) to be attached to the equation (4). Thus, we obtain (n + a) equations with the same number of variables. 

With the notation 

pappp xx   ,  

Np = U
~

p, (p=1,…,a) 

equation (4) will have the form 

UВAxx
~

   (9) 

where 
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If the system (9) is completely controllable [9], that is,  matrix 

К = {В, АВ, …, А
а-1

В} 

has the rank of a, for this system can be supplied various problems of control theory. Bearing in mind the stabilization 

of motion with respect to the manifold defined by servo constraints, you can search for the type of coercion 

U
~

 = К1х 

where K1 - a non-zero matrix of dimension (ах2а),  that provide stabilization of the trivial solution of the system 

x =(А+ВК1)х  

an appropriate choice of the elements of К1, namely, that all the roots of the characteristic equation of the system (10) 

have negative real parts [10]. 

In what follows we need the explicit form of the equations (8). In order not to prolong the records we assume that all 

constraints, imposed on the system, are stationary. Then the kinetic energy liberated parametrically system will have 

the form [8]:  
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where the coefficients 
1,, ,, sasasap AAA  of quadratically forms is a function of 1,…,a, qa+1,…,qn  and 

equation (8) in an explicit form will look like: 
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(s = 1, …,n-a)     (11) 

where [p, a+s, ] - Christoffel’s  symbols of the first kind [8]. 
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     The motions,  performed on a manifold, defined by servo constraints (1) is taken as the unperturbed and all other 

motions, performed on a manifold,  defined by equations (3) - disturbances. 

If the reactions  
   22 , saRR   

of servo constraints, to form the according to the laws: 
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(s=1,…,(n-a))) 

the system of equations (11) to the form: 
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(s=1,…,(n-a);  p=1,…,a)  (13) 

 

where zero top corresponds to the unperturbed motion: 
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order terms p   and p . 

Since the kinetic energy of the system can be expressed as a positive definite matrix [8], the sub array is positive 

definite. Then from (a + s1) last equations of (13) define  
1saq  : 
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where -  To
sasaA
1,  the transposed matrix; 1, sasa

A


- cofactor of the element 
1, sasaA   (a + s1) - th  row and 

the (a + s) -th column of the determinant of the transposed matrix  To
sasaA
1,  . 

    Substituting (14) in the first a group and the system of equations (13), we obtain: 
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    Will explore the conditions for stability of the unperturbed motion. With the notations 
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pp x ,  p = xa+p,  (p=1,…,a) 

equation (14) may be written as: 
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From the expressions (16) and (18) we see that, the equation (17) represent a system of differential equations with 

variable coefficients. The stability of this system with respect to the manifold defined by servo constraints (1), will 

explore the research methods using transient stability systems [9]. 

       We choose the auxiliary system of equations 
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of the system (19) satisfy the inequality: 
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11
 ieR ,  (1>0; i1=1,…,2a)   

When the auxiliary system (19) is selected, the studies were carried out as follows. Ask specific-negative form 
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satisfying  the conditions: 
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For the asymptotically stability of the solution  х=0  of the  system (17), is sufficient, to form variables xxi1
 in the 

right-hand side of (21) was negative definite. 

It is known that, certain conditions of positive quadratic forms  
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fulfillment of the conditions (22). Sylvester’s  inequalities   should be carried out uniformly for all  х1,…, х2а, that is.  

should required  the inequalities     
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        Conditions (22) and (23) expressed the conditions for the asymptotically stability of the system (17). 
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